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说明：本文是对 Bonhomme (2012) 的介绍，讲述了怎么在非线性面板模
型中构造不含有固定效应的矩条件，类比于线性面板中的「组内变换」。
本质上这个构造过程是希尔伯特投影定理的一个应用。阅读本文需要掌握
面板模型以及一些泛函分析的基本知识。本文并不是对原文的忠实还原，
如有疑问请参考原文。

1 背景介绍：短面板下的次要参数问题

在非线性模型中，「次要参数问题」(incidental parameter problem, IPP)
是一个由来已久的问题，它指的是，当次要参数的数量会随着样本量增加而
增加时，使用极大似然估计「共同参数」得到的估计量一般不是一致的，产生
的偏误被称为「次要参数偏误」。在非线性面板模型中，人们常常会加入固定
效应，而这些固定效应就是次要参数，当个体数 N 比较大而时期数 T 比较小
时（短面板），如用极大似然去估计共同参数，很有可能是不一致的。这个问
题必须被认真对待。

人们希望能绕开对次要参数的估计，这在某些特殊的模型中是可能的，譬
如静态 logit 模型，通过条件于次要参数的充分统计量，可以得到不含有次要
参数的条件似然函数，从而得到共同参数的一致估计量。然而，对于一般的非
线性模型，我们很难找到次要参数的充分统计量。统计学家们的处理方式是，
将似然函数分解为两个部分，一部分只包含共同参数，另一部分只包含次要参
数，于是对两部分参数的估计是独立的。但这种分解很多时候也难以得到¶

¶ 当精确分离不可得时，Cox and Reid
(1987) 提出了近似条件似然方法。不过，
这样得到的估计量还是有渐进误差的，阶
数为 O(1/T 2)，对比之下，直接用极大
似然估计得到的估计量收敛率为 O(1/T )；
尽管偏误更小，对于固定的 T，这个改进
可能并不会让人满意。计量中，Dhaene
and Jochmans (2015) 开发的「面板拆
分版刀切法」(split panel jackknife) 也
是广受好评的处理 IPP 的方法，但严格
来讲它也只能降低偏误的阶数，不能得到
固定 T 下的一致估计量。

。
另一种路径是，对次要参数（固定效应）的分布做出一些假设，然后就可

以对条件于固定效应和解释变量的似然函数做积分（关于固定效应的积分），
得到仅仅条件于解释变量的似然函数，也就避开了对次要参数的估计·

· 所谓的「相关随机效应」(correlated
random effects) 就是这种思路，将固定
效应建模为解释变量的一个参数形式，它
介于固定效应假设和随机效应假设之间。
如果我们不愿意对固定效应做出太强的假
设，那么还有一些半参数的方法可以考虑，
譬如使用筛法去逼近固定效应的分布。

。这种
方法因为其复杂性并未被人们广泛采用。

我们希望能找到一种完全剔除了次要参数的估计方法，就像在线性面板
模型中使用的「组内变换」(within transformation) 一样。这种方法要足够普
适，能适用于任何非线性模型，且无需对固定效应的分布做出任何假设。

2 模型设定

设可观测的数据是内生变量 yit 和严格外生变量的向量 xit，i = 1, . . . , N，
t = 1, . . . , T。令 αi 表示个体 i 特定的不可观测的固定效应的向量。记 yi =

(yi1, . . . , yiT )
′，xi = (x′

i1, . . . , x
′
iT )。假设 yi, xi, αi 这些变量在不同的个体之

间是联合独立且同分布的 (i.i.d.)。我们考虑「大 N 小 T」的情况，即 N → ∞
而 T 固定。
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假设我们已知 yi 条件于 xi, αi 的分布，记作 fy|x,α(·|xi, αi; θ0)。fy|x,α 的
函数形式已知，但参数 θ0 ∈ Θ 未知。记 αi 条件于 xi 的分布为 fα|x(·|xi)。令
A 表示所有可能的 αi 的集合。那么，排除了 αi 的影响后，yi 条件于 xi 的分
布可以写成¸

¸ 因为我们并未对 αi 的分布 fα|x 做出
任何假设，这个模型是半参数化的。特别
地，αi 可以和 xi 有任意相关性，它们自
己也可以有任意分布，这和经典的线性面
板模型所青睐的固定效应假设一致。

fy|x(·|x; θ0, fα|x) =
∫
A
fy|x,α(·|x, α; θ0)fα|x(α|x) dα (1)

我们的目标是，对 (1) 给出的一般模型，得到排除了 αi 而含有共同参数
θ0 的矩条件，然后能使用 GMM 得到共同参数的一致估计量。其一致性来源
于我们免于估计次要参数而带来的偏误且有正确的矩条件。

3 矩条件的构造

为描述方法，我们引入一个记号。考虑一个线性泛函 Lθ,x(·)，对于给定
的 θ 和 x，它将关于 α 的（任意）函数 g(α) 映射为关于 y 的函数 [Lθ,xg](y)：

[Lθ,xg](y) =

∫
A
fy|x,α(y|x, α; θ)g(α) dα

于是 (1) 可以写成

fy|x(·|x; θ0, fα|x) = Lθ0,xfα|x(·|x) (2)

线性算子 Lθ0,x 将固定效应的分布映射为响应变量的分布。
假设我们找到了一个函数 φ(·, x, θ)，它满足对任意 g(α) 都有∫

Y
φ(y, x, θ)[Lθ,xg](y) dy = 0 (3)

积分区域 Y 是响应变量 y 的取值范围。这个式子表明，φ 和 Lθ,x 的整个值
域是正交的（在希尔伯特空间的内积意义下）。因为 (3) 对任意 g(α) 都成立，
所以当取 g(α) = fα|x(·|x) 时，就有

E[φ(yi, xi, θ0)|xi = x] =

∫
Y
φ(y, x, θ0)fy|x(y|x; θ0, fα|x) dy

=

∫
Y
φ(y, x, θ0)[Lθ0,xfα|x](y) dy = 0 (4)

于是我们就得到了一个不含有固定效应的（条件）矩约束，我们可以认为 φ

的作用就类似于线性模型中「差分掉」固定效应的影响。现在的问题是，我们
如何找到这样的 φ？

3.1 离散情况

作为示范，我们先考虑离散的情况。假设 yi 和 αi 都服从离散分布，且支
撑集是有限集。设 Ny 和 Nα 分别是 yi 和 αi 的支撑集中元素的个数。那么
(2) 就变成了一个线性方程组，其中 fy|x, fα|x 和 Lθ0,x 都会变成条件概率：

fy|x =


Pr(yi = y

1
|xi = x)

...
Pr(yi = y

Ny
|xi = x)


Ny×1

fα|x =


Pr(αi = α1|xi = x)

...
Pr(αi = αNα

|xi = x)


Nα×1
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Lθ0,x =


Pr(yi = y

1
|xi = x, αi = α1; θ) · · · Pr(yi = y

1
|xi = x, αi = αNα

; θ)
... . . . ...

Pr(yi = y
Ny

|xi = x, αi = α1; θ) · · · Pr(yi = y
Ny

|xi = x, αi = αNα
; θ)


Ny×Nα

线性算子 Lθ0,x 此时是一个矩阵，它的值域是它的列向量所张成的 Ny 维向量
空间。为了构造和这个向量空间正交的向量 φ ∈ RNy，使用「组内」投影矩阵

Wθ,x = INy
− Lθ,xL

†
θ,x

其中 INy
是 Ny 维单位矩阵，L†

θ,x 是 Lθ,x 的伪逆。
Wθ,x 的列向量张成的向量空间是 Lθ,x 的值域在 RNy 中的正交补空间¹， ¹ 要保证这个正交补空间非空，需要

Lθ,x 的值域是 RNy 的严格子空间。这是
这个方法的一个必要识别条件，否则无法
给出有意义的矩条件。

即对任意 h ∈ RNy，都有 Wθ,xh ∈ RNy 正交于 Lθ,x 的值域。[Wθ,xh](y) 可视
作定义在支撑集 {y

1
, . . . , y

Ny
} 上的函数，当 y = y

j
时，[Wθ,xh](y) 取 Wθ,xh

的第 j 个分量。于是 (4) 就变成了

E([Wθ,xh](yi)|xi = x) = (Wθ,xh)
′(Lθ,xfα|x) = 0

这个式子对任意 h ∈ RNy 都成立，我们可以选择 RNy 的一组标准正交基来构
造出 Ny 个矩条件º，然后用 GMM 估计 θ0。 º 这 Ny 个矩条件或许有些是冗余的，但

只要有效矩条件的数量不小于 θ 的维度，
这个模型就是可识别的。

本质上，这个方法就是找到一个线性算子 Wθ,x，当对 fy|x = Lθ0,xfα|x 两
边左乘 Wθ,x 时，便得到

Wθ,xfy|x = Wθ,xLθ0,xfα|x = 0

从而消除掉任何关于 αi 的影响。因为我们不知道任何关于函数 fα|x 的信息，
所以 Wθ,x 必须完全正交于 Lθ,x 的值域。

3.2 一般情况

当 yi 或 αi 是连续分布或支撑集是无限集时，上一小节的方法不再适用。
此时，Lθ,x 是一个积分算子，它的值域是定义在 Y 上的所有平方可积函数所
张成的希尔伯特空间 L2(Y)。

我们引入一些记号。给定两个权重函数 πα > 0 和 πy > 0，分别定义在 A
和 Y 上，定义两个 A 和 Y 上的平方可积函数所构成的空间：

Gα =

{
g : A → R,

∫
A
g(α)2πα(α) dα < ∞

}
Gy =

{
g : Y → R,

∫
Y
g(y)2πy(y) dy < ∞

}
它们都是「希尔伯特空间」(Hilbert space)，即完备的内积空间，内积定义为

⟨g1, g2⟩α =

∫
A
g1(α)g2(α)πα(α) dα

⟨g1, g2⟩y =

∫
Y
g1(y)g2(y)πy(y) dy

由此可以定义范数 ∥g∥α =
√

⟨g, g⟩α 和 ∥g∥y =
√
⟨g, g⟩y。

于是线性积分算子 Lθ,x : Gα → Gy 的作用是将 Gα 中的函数映射为 Gy 中
的函数。记 Lθ,x 的值域为 R(Lθ,x) ⊆ Gy：

R(Lθ,x) = {Lθ,xg : g ∈ Gα}
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令 R̄(Lθ,x) 是 R(Lθ,x) 在 Gy 中的闭包。由此可以定义投影算子 Wθ,x：对任
意 h ∈ Gy 有

Wθ,xh = h− Projπy
[h|R̄(Lθ,x)]

其中 Projπy
[h|R̄(Lθ,x)] 是 h 在 R̄(Lθ,x) 上的正交投影：

Projπy
[h|R̄(Lθ,x)] = argmin

g∈R̄(Lθ,x)

∥h− g∥y

希尔伯特投影定理将保证正交投影的存在性和唯一性。

定理 1. 设 fy|x ∈ Gy。以下两个结论成立且等价：

Wθ0,xfy|x = 0

E
(
πy(yi)[Wθ0,xh](yi)

∣∣x = xi

)
= 0 ∀h ∈ Gy (5)

这个定理从理论上给出了关于 θ0 的条件矩约束。我们可以据 (5) 构造出
无条件矩，然后使用 GMM 对 θ0 进行估计。

至此，我们完成了对「泛函差分」基本思想的介绍，它的内核本质上就是
找正交投影算子，而这通过希尔伯特投影定理得到保证。不过其实有一件很重
要的点我们略过了，就是定义了 Gα 和 Gy 的权重函数 πα 和 πy（以及 h）该
如何选择的问题。尽管从理论上，任意的 πα 和 πy 都能构造出投影算子 Wθ,x，
但不同的选择会对矩条件的估计效率产生影响。要达到最好的估计效率是一
件很困难的事，原文第 4 节做了一些讨论，这里不展开介绍。

3.3 投影算子的离散近似

如果 fy|x 和 fα|x 是离散分布（且支撑集是有限集），那么我们可以直接
使用第 3.1 小节中的方法来构造投影矩阵 Wθ,x。但当 fy|x 和 fα|x 是连续分
布时，投影算子一般没有显式表达式，此时，我们可以进行离散近似处理。这
里进行简单介绍。

把「无限维投影」近似成「有限维投影」，近似来自两个方面：其一，希
尔伯特空间中内积是连续积分；其二，R̄(Lθ,x) 是无限维子空间。离散化近似
同时把这两个「无限」替换为有限维对象。

用抽样近似 Gy 内积（把积分变求和）

在 Gy = L2(πy) 中，

⟨g1, g2⟩y =

∫
Y
g1(y)g2(y)πy(y) dy ∥u∥2y =

∫
Y
u(y)2πy(y) dy

抽取 Ny 个样本点 ys ∼ πy (s = 1, . . . , Ny)»，取近似 » 这里假设 πy 是一个密度函数，但也可
以推广到一般函数。

∥h− g∥2y =

∫
Y
(h(y)− g(y))2πy(y) dy ≈ 1

Ny

Ny∑
s=1

(h(ys)− g(ys))
2

即「Gy 意义下的投影」可用「在采样点 {ys} 上的平方损失最小化」来近似。
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用有限维空间近似值域 R̄(Lθ,x)

第二步是用有限个可计算的函数去近似 R̄(Lθ,x)。使用由模型 fy|x,α 诱导
的「自然基」(natural bases)：

µs(y) =

∫
A

1

πα(α)
fy|x,α(y|x, α; θ) fy|x,α(ys|x, α; θ) dα s = 1, . . . , Ny (6)

我们用 µ1, . . . , µNy
张成的有限维空间 span{µ1, . . . , µNy

}去近似 R̄(Lθ,x)。若
直接积分困难，可以用数值积分方法（如重要性采样）近似 (6)¼

¼ 这实际上又对 α 做了一次离散化。如
此，线性算子 Lθ,x 的离散近似就成了一
个矩阵，回到了第 3.1 小节的离散情况。。

当离散采样点数越来越大时，近似误差会趋于 0，由此得到的 GMM 估
计量的一致性和渐进正态性不会受到影响。

4 总结

本文介绍了「泛函差分」方法的基本思想。它的内核是通过正交投影算子
完全去掉固定效应的影响，得到不含有固定效应的矩条件。这个方法相当普
适，因为它适用于任何非线性模型，且无需对次要参数的分布做出任何假设。

原文还对该方法的识别条件进行了详细讨论½，并通过数值模拟验证了方 ½ 主要论点是让线性算子 Lθ,x 的值域是
Gy 的严格子空间，从而保证正交补空间
非空，即通过投影算子能得到有意义的矩
条件。

法的有效性，感兴趣的读者可以阅读原文。
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